

EMC期刊分享 (2025年) 四月第1期 电机整改案例分享

电机传导整改案例

一. 现象描述

1. 产品信息

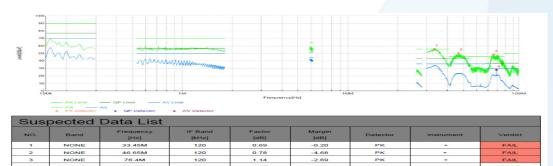
汽车无刷散热风扇是一种用于汽车发动机冷却系统的重要部件,它采用无刷电机技术,相比传统的有刷电机风扇具有更长的使用寿命、更低的噪音和更高的效率。无刷电机通过电子换向器驱动,运行效率高,能有效降低能耗,提升整体散热性能;无刷电机无需电刷接触,减少了磨损,从而大幅提高了产品的可靠性和使用寿命,降低了维护成本。

2. EMC 测试不合格项

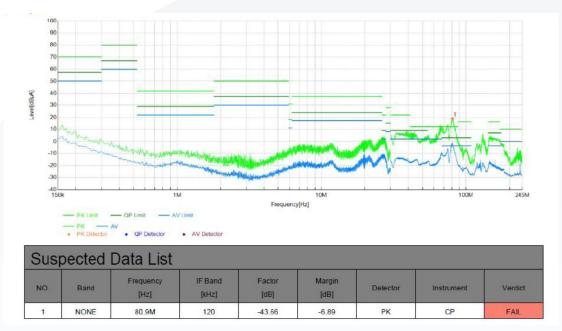
传导发射-电压法 (GB18655-level3)

传导发射-电流法 (GB18655-level3)

二、超标原因分析


- 1) 产品采用无刷电机设计,其主要干扰源来自于控制板中 PWM 控制信号的高次谐波,这些谐波成分可能通过传导或辐射方式影响系统的电磁兼容性。
- 2) 开关器件 IGBT 在高频工作状态下,由于快速通断操作,容易产生电压尖峰和振 铃现象,这不仅会对系统内部电路造成干扰,还可能通过电源线或信号线向 外传导干扰信号。
- 3) 上下桥电路的走线回路较长,增加了寄生电感和耦合路径,同时端口滤波措施不足以及对地电容的有效面积较小,进一步削弱了干扰抑制能力,导致电磁兼容性能下降。

以上问题需要从硬件设计和软件优化两方面入手,采取针对性措施进行整改,以提升产品的整体电磁兼容性表现。


三、测试数据分析:

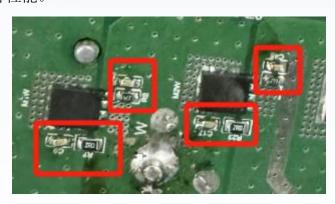
未整改之前的测试数据

电压法

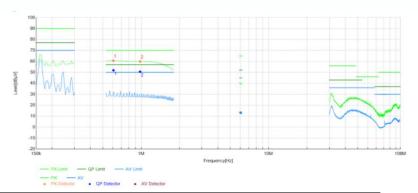
四、产品整改优化

在正式改版前,我们对超标频点进行了深入分析,并采取临时措施进行验证。以下是经过实践证明整改效果显著的措施:

1、端口滤波优化:在输入端靠近机壳边缘处增设铺地,并通过两颗螺丝与机壳搭接,有效增加接地面积以降低阻抗。同时,在正负极对地电容设计中采用 102、103 和 104 的组合配置,进一步提升滤波效果;此外,在正负极之间增加 226 电容,强化共模干扰抑制能力提升电磁兼容性能。



2、PWM 滤波优化:在PWM 控制信号上串入75 欧姆电阻,用于抑制高频谐波的传播;并在该电阻后端增加102 电容连接至机壳,形成低阻抗接地回路,有效滤除高频干扰信号。



3、在上下桥管增加 RC 吸收网络,其中电阻 R 选用 $10\,\Omega$,电容 C 选用 103 规格。该设计可有效吸收开关过程中产生的电压尖峰和振铃现象,降低电磁干扰,提升电磁兼容性能。

五、改版后样机复测

电压法



Sus	Suspected Data List							
NO.	Band	Frequency [Hz]	IF Band [kHz]	Factor [dB]	Margin [dB]	Detector	Instrument	Verdict
1	NONE	605k	9	1.39	9.34	PK	+	PASS
2	NONE	980k	9	1.35	10.02	PK		PASS

Final Data List								
NO.	Band	Frequency [Hz]	Factor [dB]	IF Band [KHz]	QP Margin [dB]	Verdict		
1	NONE	606.2403k	1.39	9	5.10	PASS		
2	NONE	980.7938k	1.35	9	6.42	PASS		

电流法

Suspected Data List								
NO.	Band	Frequency [Hz]	IF Band [kHz]	Factor [dB]	Margin [dB]	Detector	Instrument	Verdict
1	NONE	34.65M	120	-44.08	17.59	PK	CP	PASS
2	NONE	83.75M	120	-43.60	9.19	PK	CP	PASS
3	NONE	148.65M	120	-42.89	12.20	PK	CP	PASS
4	NONE	24.575M	9	-44.07	22.36	AV	CP	PASS
5	NONE	159.05M	120	-42.81	13.61	AV	CP	PASS

六、案例总结

- 1. 针对无刷电机产品的干扰源,主要来源于信号源中的 PWM 信号以及开关器件 MOSFET/IGBT 在快速通断过程中产生的电压尖峰和振铃现象,这些因素可能导致测试不合格。在设计时采取吸收电路、滤波电路以及优化环路等多种措施,以有效应对和解决该类干扰问题。
- 2. 在 PCB 设计阶段,应注重最小化关键元件之间的环路面积,例如 MOSFET/IGBT 与驱动芯片等核心组件需形成紧凑布局,避免长距离走线 带来的寄生参数影响,从而提升整体电路的抗干扰性能和稳定性。

感谢您对恒创技术的支持,敬请期待下一期;

恒创订阅号

深圳市恒创技术有限公司——您的电磁兼容伙伴

公司地址:深圳市宝安区黄田工业城中信宝光电产业园 A5 栋 102

联系邮箱: li@hc-emc.com

公司网址:www.hc-emc.com

电话: 0755-27082789\27083789 转 806

传真: 0755-27325566-804